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Abstract. The problem of spontaneous pair creation in static external fields is reconsidered. A
weak version of the conjecture proposed by Nenciu (1980Commun. Math. Phys.76117–28) is stated
and proved. The method reduces the proof of the general conjecture to the study of the evolution
associated with the time-dependent Hamiltonian,Hε(t), of a vector which is the eigenvector of
Hε(t) at some given time. A possible way of proving the general conjecture is discussed.

1. Introduction

We reconsider in this paper the problem of spontaneous pair creation in static external fields. In
the original version [4], the problem was addressed to high-energy physicists. The experimental
test was done by comparing the theoretical predictions with the experimental results coming
from heavy ion collision experiments. As is stated in [5], there was no agreement between the
two results, one of the possible causes being the large effects of non-adiabatic processes.

Over the past few years, experimental results have shown that the transport properties
of semiconductors with high symmetry may change drastically if a certain critical value
of the external electric field is exceeded. A particular example is a quasi-one-dimensional
semiconductor, cooled down below the Peierls transition temperature. It is known that, below
this critical temperature, a gap opens in the single-particle excitation spectrum. Moreover, the
experimental results [3] show the existence of a threshold value of the applied electric field
where the transport properties change drastically. The two elements: existence of the gap in the
one-particle Hamiltonian spectrum and the existence of a critical value of the applied electric
field, above which the conductivity is practically reduced to zero, are strong arguments for
the idea that we are faced here with the phenomenon of spontaneous pair creation. We agree
that there are many theories which, more or less, explain this phenomenon. While most of
them involve interacting quantum fields, our hope is that an effective potential can be written
down such that, for applied electric fields above the threshold value, the over-critical part of
the conjecture [4] applies. If this is true, then there may be another way to test the theory
experimentally, this time, with better control on the time variations of the external fields and
so, on the non-adiabatic processes. In some situations, the threshold value of the electric field
can be small. This means that, experimentally, we are not enforced to switch off the applied
field (to protect the sample). This shows one of the qualitative differences between the two
experimental settings: in heavy ion collisions, the quantum system is perturbed by the electric
fields produced during the collisions so we have no control on the ‘switch on’ or ‘switch off’ of
the interaction. In contradistinction, for a semiconductor with low critical value of the electric
field, we have total control on how slowly the interaction is introduced and switched off.
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Because of a technical difficulty, in [5], the definition of over-critical external fields was
slightly modified in order to prove the existence of the over-critical external fields. We propose
another approach of the problem which avoids this technical difficulty. However, this does
not mean that the problem of spontaneous pair creation is solved, but, in the light of the latter
observation, the new approach seems to be more appropriate for the problem of spontaneous
pair creation in semiconductors.

2. Description of the problem

Because the results in scattering problems involving periodic Schrödinger operators are much
poorer than for those involving Dirac operators, we will treat the problem at the level of
first quantization. We show that, above the critical value of the interaction, electrons can
spontaneously transit between two different energetic bands. If the scattering operator can be
implemented in the second quantization, this result is equivalent to spontaneous pair creations
of electrons and holes.

For simplicity, we will discuss here the case of a self-adjoint operator,H0, defined on
some dense subspaceD(H0) of the Hilbert spaceH, the spectrum of which consists of two
absolute continuous, bounded, disjoint parts. We denote the lower and upper parts byσ−
andσ+ respectively. LetHλ = H0 + λV be the perturbed operator, where we assume that
D(Hλ) = D(H0), D(H0) ⊂ D(V ) and the perturbation leavesσ− andσ+ unchanged. Our
interest is in the case when, asλ increases, some eigenvalues emerge fromσ+ and move
continuously toσ−, and there is a critical value,λc, at which the lowest eigenvalue touchesσ−
and then it disappears in the lower continuum spectrum. We study the scattering problem of
pair (H0, Hλ) in the adiabatic switching formalism for both cases:λ < λc andλ > λc.

Let us consider a function,ϕ : R→ R+, ϕ ∈ C∞ such that

ϕ(s) =
{

1 |s| < 1

0 |s| > 2
(1)

and, for a pair of positive numbers,ε = (ε1, ε2), we consider the adiabatic switching factor:

ϕε(s) =
{
ϕ(ε1s) s < 0

ϕ(ε2s) s > 0.
(2)

One can consider thatε1 controls the ‘switch-on’ process andε2 controls the ‘switch-off’
process. Note thatϕε is also of C∞. For the time-dependent HamiltonianHε,λ(t) =
H0 + λϕε(t)V , and the time-independent HamiltonianHλ = H0 + λV , we denote by

W±ε,λ = s − lim
T→±∞

U ∗ε,λ(T , 0) e−iTH0 (3)

and

W±λ = s − lim
T→±∞

eiTHλe−iTH0 (4)

the adiabatic and static Moller operators. The notationUε,λ(T , T
′) stands for the propagator

corresponding toHε,λ(t). We suppose that, forλ ∈ [0, λ0], λ0 > λc, these operators exist,
the adiabatic Moller operators converge strongly to the static operators. In addition, we
consider that the static Moller operators are locally complete onσ−, i.e.Range[PHλ(σ−)W

±
λ ] =

PHλ(σ−)H. We will discuss later why the situation is different in the case when the Moller
operators are only weakly complete (in the sense of [7]). With these assumptions, one
can define the unitary scattering matrixSλ = (W−λ )

† × W +
λ and the adiabatic version,
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Sε,λ = (W −ε,λ)†×W +
ε,λ. It is known [2] that the adiabatic scattering operator converges weakly

to the static scattering operator in the adiabatic limit,ε→ 0.
Let us denote byPHλ(�) the spectral projection ofHλ corresponding to some� ⊂ R.

The spontaneous excitations (transfer fromPH0(σ−) to PH0(σ+) and vice versa) are denied
by the fact that the scattering matrixSλ commutes with the unperturbed Hamiltonian and
consequentlyPH0(σ±) Sλ PH0(σ∓) ≡ 0. The key observation is thatSε,λ does not commute with
the unperturbed Hamiltonian and, becauseSε,λ goes weakly to the static scattering operator,
we still have a chance for limε→0 ‖PH0(σ±) Sλ PH0(σ∓)‖ > 0. Indeed, it was proven in [5] that
this is the case if one considers a discontinuous switching factor,ϕδ, with limδ→0 ϕδ a smooth
function. Moreover, it was shown that

lim
ε1=ε2→0

‖PH0(σ±) Sε,λ PH0(σ∓)‖ = 1− o(δ) (5)

providedλ > λc. We will prove in the next section that

lim
ε1→0

lim
ε2→0
‖PH0(σ±) Sε,λ>λc PH0(σ∓)‖ = 1 (6)

but withϕ of C∞ class. As was already pointed out in the previous section, this version may
be more appropriate for the case of pair creation in semiconductors.

3. The result

Our main result is:

Theorem 1. In the conditions enunciated in the previous sections, forλ ∈ [0, λ0 > λc] and
H(t) of C3 in respect witht (in the sense of [6]), then

lim
ε1→0

lim
ε2→0
‖PH0(σ−)Sε,λPH0(σ+)‖ =

{
0 if λ < λc

1 if λ > λc.
(7)

Proof. The under-critical part (λ < λc) results directly from the adiabatic theorem. In this
situation, the order of limits are not important. Note that the under-critical case was proven in
full generality for Dirac operators in [4].

We now start the proof of the over-critical part (λ > λc) which closely follows [5]. We
will denote byEg(t) andψg(t) the lowest eigenvalue ofHε,λ(t) and one of its eigenvectors.
(Without loss of generality, we can suppose that the eigenvalues do not change their order
during the switching). Any constant which depends onε1,2 and goes to zero asε1,2 goes to
zero will be denoted byo(ε1,2). Our task is to find a vectorφ, ‖φ‖ = 1, such that

‖PH0(σ−)Sε,λPH0(σ+)φε‖ > 1− o(ε1, ε2). (8)

Let ϕ(−s0) = λc/λ, s0 > 0, and 0< δ < 1 such thatEg(−(s0 + δ)/ε1) exists. From the
adiabatic theorem applied on(−2/ε2,−(s0 + δ)/ε1) we obtain

‖PH0(σ+) Uε,λ(−2/ε1,−(s0 + δ)/ε1)ψg(−(s0 + δ)/ε1)‖ > 1− o(ε1) (9)

and we will chooseφ′ε1
= Uε,λ(−2/ε1,−(s0 + δ)/ε1)ψg(−(s0 + δ)/ε1), where the index

ε1 emphasizes that this vector depends only onε1. Again, from the adiabatic theorem on
(−(s0 + δ)/ε1, 0) we have

‖PHλ(σ−) Uε,λ(0,−2/ε1)φ
′
ε1
‖ > 1− o(ε1). (10)
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BecauseW±λ are complete, there exists̃φε1 ∈ PH0(σ−)H, ‖φ̃ε1‖ 6 1, such that

W +
λ φ̃ε1 = PHλ(σ−) Uε,λ(0,−2/ε1)φ

′
ε1
. (11)

In fact, ϕ̃ε1 is given by

φ̃ε1 = PH0(σ−)(W
+
λ )

†Uε,λ(0,−2/ε1)φ
′
ε1
. (12)

Thus we can continue:∥∥PH0(σ−) eiH02/ε2Uε,λ(2/ε2, 0) Uε,λ(0,−2/ε1)φ
′
ε1

∥∥
>
∣∣〈φ̃ε1, e

iH02/ε2Uε,λ(2/ε2, 0) Uε(0,−2/ε1)φ
′
ε1

〉∣∣
> |〈W +

λ φ̃ε1, Uε,λ(0,−2/ε1)φ
′
ε1
〉|

−∣∣〈[U ∗ε,λ(2/ε2, 0) e−iH02/ε2 −W +
λ

]
φ̃ε1, Uε,λ(0,−2/ε1)φ

′
ε1

〉∣∣
= ‖PHλ(σ−) Uε,λ(0,−2/ε1)φ

′
ε1
‖2 − |〈[W +

ε2,λ
−W +

λ ]φ̃ε1, Uε,λ(0,−2/ε1)φ
′
ε1
〉|

> 1− o(ε1)− |〈[W +
ε2,λ
−W +

λ ]φ̃ε1, Uε,λ(0,−2/ε1)φ
′
ε1
〉| (13)

by using inequality (10). Finally, choosingφ = e−iH02/ε1φ′ε1
it follows from (9) that

‖PH0(σ−)Sε,λPH0(σ+)φ‖ >
∥∥PH0(σ−) eiH02/ε2Uε,λ(2/ε2,−2/ε1)φ

′
ε1

∥∥− o(ε1). (14)

Further, from inequality (13)

‖PH0(σ−)Sε,λPH0(σ+)φε1‖ > 1− o(ε1)− |〈[W +
ε2,λ
−W +

λ ]φ̃ε1, Uε,λ(0,−2/ε1)φ
′
ε1
〉|. (15)

Becauseφ̃ε1 do not depend onε2, the statement of the theorem follows from the strong
convergence of the adiabatic Moller operator to the static Moller operator. �

Following [1], one can second quantize our problem by consideringPH0(σ±) as the spaces
of particles and antiparticles (holes). IfSε,λ can be implemented in the Fock space, then one
can follow the method of [5] to show that this result is equivalent to spontaneous pair creation.

We want to point out that the local completeness of Moller operators is essentially given
in the proof of the above theorem. Supposing that they are only weakly locally complete
(i.e. RanPHλ(σ−)W

−
λ = RanPHλ(σ−)W

+
λ 6= PHλ(σ−)Ha.c.(Hλ)), then the eigenvector

ψg(−(s0+δ)/ε1)may be trapped inPHλ(σ−)[RanW +
λ ]⊥ under the evolutionUε. Unfortunately,

it follows from [8] that this is not a rare case. Moreover, because of infinite dimensionality of
this subspace, the weak convergence

w − lim
ε1→0

PHλ(σ−) Uε,λ(0,−1/ε1) = 0 (16)

cannot be used to show that the vector escapes fromPHλ(σ−)[RanW +
λ ]⊥ after a long period

of time. The conclusion is that during the ‘switch-on’ process, the eigenvector is most likely
trapped and stays inPHλ(σ−)[RanW +

λ ]⊥. Then there is no way of defining a vector similar to
φ̃ε1 so the above proof cannot be applied. Because(W−ε,λ)

† converges only weakly to(W−λ )
†,

there is no direct argument against the possibility that the ‘switch-off’ process to bring this
vector back toPH0(σ+)H.
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4. Conclusions

The last observation shows that even in this simplified form, the problem of spontaneous
transitions is not trivial. A deep question about the subject is under what conditions the same
result is true disregarding any order of the limits, in particular, forε1 = ε2. In the case when
Moller operators are complete (or locally complete onσ−), the result of the last section reduces
this problem to the study of̃φε1 properties. One might expect that∫ ∞

0
dt
∥∥V e−itH0φ̃ε1

∥∥ < M (17)

with M independent ofε1 in which case it is straightforward that the order of limits is
unimportant. To prove a relation like 17, one has to prove thatφ̃ε1 belongs to a set of vectors for
which the Cook criterion is valid, together with uniform estimates. From the definition ofφ̃ε1,
one can see that this problem can be reduced to the study of the evolution of the eigenvector
ψ(−(s0 + δ)/ε1), which does not depend onε1. In most cases, the Schwartz space may be
chosen as the set of vectors for which the Cook criterion holds. Unfortunately, to prove that the
evolution ofψ(−(s0 + δ)/ε1) belongs to this space is almost impossible. A much easier task
is to prove that it belongs to some Sobolev spaceWk,p. If this step is accomplished, we think
thatWk,p estimates of [9] may be used to complete the proof, at least for large dimensions.
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